
www.manaraa.com

8. Emergent Knowledge in Web Development

David Lowe

University of Technology, Sydney
PO Box 123, Broadway, NSW, 2007, Australia
email: david.lowe@uts.edu.au

ABSTRACT: Although Web development can be considered a derivative of
software engineering, it exemplifies a class of development projects that has some
unique characteristics that lead to changes in the development approach. Amongst
other factors, there is substantial volatility in clients’ articulation of their require-
ments, particularly as their understanding evolves of the way in which the systems
under development might affect their client and stakeholder interactions, business
processes, and ultimately their business model. We discuss these differences and
the impact that they have on the development processes that are adopted for com-
mercial Web systems. Specifically, we look at the ways in which client knowl-
edge (and understanding) emerges progressively during the development process,
often as a consequence of the design process, and the ways in which this results in
a design-driven requirements process.

KEYWORDS: Web development; process; design; requirements

8.1 Introduction

Web systems were originally (i.e. in the early to mid 1990’s) characterized by a
strong emphasis on content and information provision. As such, they were often
viewed not as software systems but as information systems. This characterization
was evidenced in the focus of most of the early Web design methods (such as
RMM [24] and OOHDM [41]) that emerged out of the hypertext community and
emphasized content modeling and information structuring.

As Web technologies matured and became more sophisticated, the systems be-
ing developed exhibited increasingly complex functionality and consequently
more complex underlying software. Again, this was typified by the emergence of
web design methods that aligned more closely with mainstream software design
approaches (such as a plethora of approaches based on UML – see [2, 8, 22, 25,
30] for examples) and an increasing debate over whether “Web engineering” can
be viewed as a particular class of software engineering (see [38, ch. 29] for a
discussion of this issue).

Whilst it is true to a limited extent that Web system development is primarily
the creation of software systems, there is a growing recognition that Web systems
– or rather that category of applications for which Web systems are an exemplar –

www.manaraa.com

have various unique characteristics that are only poorly addressed by conventional
development practices [31]. Amongst other factors, there is substantial uncertainty
in clients’ understanding of the ways in which the systems under development
might affect their client and stakeholder interactions, business processes, and ulti-
mately their business model. This, in turn, has some major implications for the
ways in which, and particularly when, clients' are able to articulate their require-
ments during the development process.

Development practices from related domains (software engineering, graphic
design, marketing etc.) do not typically address these differences particularly well.
Despite this there has been little consideration within the research literature of the
implications of these characteristics on the development process. This is in spite
of the obvious growth in importance of these systems to business success.

In this chapter we begin by investigating some of main differences between
Web systems and other software systems. We then move on to explore the impli-
cations of the key differences for the ways in which client's knowledge evolves
during the development process and how this should be addressed. We will, in
particular, look at the role that the design process plays in this evolving under-
standing.

Before starting to look at Web systems in more detail one point of clarification
is worth raising. Whilst we use the term web system in this paper for simplicity,
we see these systems (i.e. those that have an architecture based on the utilization
of Web technologies and protocols) as being exemplars of a much broader cate-
gory of applications. This broader category can be understood by looking at the
characteristics discussed in the next section, but can probably be best defined by
one key characteristic – that the system under development changes the nature of
the interaction with external stakeholders (such as clients, customers and business
partners) and hence potentially triggers changes in business processes and ulti-
mately business models. In other words, the solution under development inher-
ently changes the nature of the problem which it was addressing. This can be de-
scribed as the problem domain and the solution domain being mutually constituted
– a concept that is well understood in the social informatics literature! We will
discuss this is much more depth later in the chapter, but at this point it is simply
worth noting that where we refer to web systems, this broader interpretation will
often be applicable.

8.2 Web System Characteristics and Implications

There is a growing body of research [5, 13, 35] that is attempting to understand
the differences between Web systems and more conventional software systems
(i.e. given the above comments at the end of the introduction, we describe as con-
ventional systems those which have minimal impact on the fundamental nature of
the interactions with external stakeholders and/or the nature of the problem being
addressed). In general, we can draw a distinction between the unique characteris-
tics of Web systems that are technical (i.e. related to the specific technologies that

www.manaraa.com

are used and how these impact on the structure of the application) and those that
are organizational (i.e. related to the ways in which organizations make use of
these systems).

It is also worth noting that although Web systems can be viewed as software
systems, this does not automatically imply that existing representations of various
aspects of these systems will be able to be directly applied. Indeed, to blindly ap-
ply existing models to the representation of Web systems would encourage devel-
opers to overlook the peculiarities of these Web systems, and hence not address
these peculiarities, leading to inappropriate solutions. This is not to say that exist-
ing models should not be utilized – simply that we need to do so with an aware-
ness of their limitations with respect to the aspects of Web systems that we wish to
understand and document. We also need to understand how these limitations may
be circumvented by appropriately supplementing (or replacing where necessary)
the models.

Further, improving the modeling support for the unique characteristics of Web
systems is a useful first step – but, on its own, it is not sufficient. We also need to
consider how we actually carry out the development. This includes both the spe-
cific activities and tasks that are desirable, as well as broader process issues re-
lated to how we organize this work.

We shall look at the various unique characteristics of Web systems, and inves-
tigate the impacts on both what we may wish to represent and potential changes to
the development process.

8.2.1 Technical Differences

There are obvious technical differences between Web systems and more conven-
tional software and IT systems. The most significant of these are as follows:

Link between business model and technical architecture
Possibly the most obvious difference between web and traditional software devel-
opment is seen in regard to the specific technologies that are used and the ways in
which these are interconnected. For example, the technical structure of Web sys-
tems merges a sophisticated business architecture (that usually implies significant
changes to the business model of the client) with both a complex information ar-
chitecture and a highly component-based technical architecture [39]. The linkage
between the business architecture and the technical design of the system is much
tighter than for conventional software systems (i.e. the technology is more visible
to users and influences an organizations interaction with its stakeholders very sig-
nificantly). Similarly, the information architecture (which covers aspects such as
the content viewpoints, interface metaphors and navigational structures) is sub-
stantially more sophisticated than conventional software systems.

The impact that Web systems have on business models implies that there is a
need to be able to understand (and document) the link between business models
and system architectures. This has typically been only implicitly addressed in tra-
ditional development as the business models are well established and understood.

www.manaraa.com

This is less true for Web projects and, as a result we see a growing body of work –
largely emerging from large technology vendors such as IBM, Sun and Microsoft
– that considers how to represent supported business functions and the technical
architectures required to support these. The most mature of these approaches is
the patterns for e-Business work being developed by IBM (see
http://www.ibm.com/framework/patterns/). This work provides a framework for
identifying common patterns of business models. As stated in [28]:

“The paths to creating e-businesses are repeatable. Many companies assume that they
are unique and that therefore every creation of an e-business has to be learned as you go.
In fact, there are lessons and architectural paths or patterns that can be discerned from
all these engagements.”
For each business pattern, a number of logical architectures (or topologies) are

defined. These topologies provide a mechanism for fulfilling a particular business
need. In effect, these models provide a direct link between the business models
that underpin the systems being developed and the technical architecture that sup-
ports these business models. One problem with these current approaches is that the
architectural models tend to emphasize functionality, with little consideration of
how to represent the information architecture. In particular, aspects such as con-
tent modeling, information viewpoints etc. are not addressed.

Although the relationship between the business model and the system architec-
ture is beginning to be addressed at a notational level, there is little work in this
area in terms of processes that support the interpretation of business requirements
and the relationship that these have to the architecture. Even more significantly,
there is little understanding of the impacts of a given architecture back on the
business processes and models. The work that does exist tends to focus on the de-
sign of architectures (see the next point). One of the few exceptions is the IBM
work on patterns mentioned above. Although not providing a formal process, it
does suggest an implicit process whereby the broad business needs are used to se-
lect a suitable business pattern, and then to use this to guide the selection of suit-
able architectures.

Open modularized architectures
Related to the above point is the emphasis that is typically placed on open and
modularized architectures for web systems. Though not unique to Web systems, it
is often more pronounced. Web systems are often constructed from multiple
COTS (commercial off-the-shelf) components that are adapted and integrated to-
gether – particularly for the system back end middleware layers. This implies that
strong integration skills become much more critical in most Web projects.

Although there is significant attention on modeling of open and component-
based systems, little attention has yet been applied to considering the modeling of
these systems or the associated development processes in the context of the Web.

Given this component-based development, strong integration skills become
much more critical in most Web projects. The importance of a strong architectural
design is also increased. Indeed, many see creating a solid architecture as the most
crucial component of a successful Web systems development. One aspect that is
yet to be effectively addressed is appropriate support (either as tasks or suitable

www.manaraa.com

techniques) for the linking of the various disparate elements of the architecture
(i.e. informational and technical to the business architecture) [19].

Rapidly changing technologies
The technology that underpins most web systems is changing very rapidly. This
has several consequences. The first is that it increases the importance of creating
flexible solutions that can be updated and migrated to new technologies with
minimal effort. For example, the need for reusable data formats (such as XML)
increases substantially. A second consequence is that developer's understanding
of these technologies is often restricted, thus increasing project risks.

The work on detailed design notations for representing certain aspects of Web
systems may actually create problems in terms of the portability of designs into
new technologies. Alternatively, work on architectures and, more broadly, on in-
formation models tends to create designs that are less dependent on specific tech-
nologies, and hence more likely to be able to be adapted to changes.

Content is king
Of notable significant is the importance of content. Irrespective of the sophistica-
tion of the functionality and the creativity of the interface, a site is likely to fail
without appropriate, substantial and up-to-date content. This implies both an effec-
tive information design as well as suitable content management. This importance
of content within Web sites implies a need to at least consider how we understand
and represent the informational elements of a Web system. It is not surprising
therefore that that much of the earliest work on Web development models focused
on information modeling and structuring.

Early approaches in this area evolved out of work on data modeling (such as
Entity-Relationship models) and applied this to modeling the information domain
associated with applications. Indeed, much of this work predates the Web and fo-
cused on hypermedia design. For example RMM (Relationship Management
Methodology [24]) claims to provide a structured design model for hypermedia
applications. In reality, the focus is very much on modeling the underlying con-
tent, the user viewpoints onto this content and the navigational structures that
interlink the content. OOHDM (Object-Oriented Hypermedia Design Model [42])
is a similar approach, though somewhat richer in terms of the information repre-
sentations and based on object-oriented software modeling approaches. Other
similar examples include EORM [26] and work by Lee [27]. WSDM [11] at-
tempts to model slightly different characteristics – beginning more explicitly from
user requirements, but these are only addressed in a very rudimentary fashion. In
general, these notations were either developed explicitly for modeling information
in the context of the Web, or have been adapted to this domain.

More recently, work on both WebML (Web modeling Language [6]) and the
adaptation of UML (Unified modeling Language [34] – an emerging industry
standard for modeling object-oriented systems – see for example [3]) has begun to
amalgamate these concepts into a richer modeling language for describing Web
applications. However, despite aims to support comprehensive descriptions, the

www.manaraa.com

focus (as with the above techniques) is very much on content modeling rather than
describing the functionality that is a key element of most current commercial Web
systems. This leads on to the next point.

Even less consideration has been given to process related issues in terms of
dealing with content. Approaches such as Usage Centered Design [9] provide
some indications of suitable activities – though typically not as part of a broader
framework. The actual authoring of the content itself is also a significant devel-
opment issue that is often overlooked. With conventional software development
the population of the system with data is largely viewed as an operational issue (or
at best, part of deployment). With Web development, then generation of “data”
(i.e. content authoring) is fundamentally part of the development process [18] –
involving significant editing and layout of text, preparation of images and other
media, obtaining copyright clearances etc. The development processes that under-
pin some of the information management approaches discussed earlier recognize
this explicitly.

Increased emphasis on user interface
With conventional software systems, users must make an (often considerable) in-
vestment in time and effort to install and learn to use an application. With web
applications, however, users can very quickly switch from one web site to another
with minimal effort. As such, it becomes much more critical to engage users and
provide much more evident satisfaction of users' needs and achievement of their
objectives. The result is an increased emphasis on the user interface and its asso-
ciated functionality. This is even more significant when it is recognized that many
direct users of the systems are external rather than internal stakeholders.

A little more subtly, the emergence of authoring tools has focused on support-
ing rapid development and on visual design rather than functionality. This in turn
has promoted a greater use of designs as a part of a specification – and thus allows
a more interactive process between gathering requirements and building solutions.

A key element of user interfaces is the functionality that they provide. A few at-
tempts have been made to integrate information modeling concepts with system
functionality [8, 45] though in general these approaches are still rather simplistic,
lack scalability and focus on low-level design representations. Conallen's [8] work
in particular is interesting insofar as it attempt to link a user's view of the system
(as seen through the interaction with Web pages) to the back-end processes that
support this interaction.

Other researchers have looked at modeling the way in which systems are util-
ized. For example, Guell et al [20] extend OOHDM to include tools such as user
scenarios and use cases. Vilain et al. [47] has adapted UML to representing user
interactions. Other researchers have investigated the use of formal methods for
representing navigational requirements [17] or timing constraints [36] – though
these tend to focus on ensuring consistency rather than directly addressing the
quality of the user interface. Possibly the most fruitful work in this area is usage
centered design [9], although a rigorous analysis of the application of these tech-
niques to Web development has yet to be carried out.

www.manaraa.com

The development process for user interface also raises numerous issues. Effec-
tively this brings together content authoring and software development or, more
precisely, creative design and technical development. It is worth noting that this
highlights the difficulties that occur when combining two different cultures to-
gether within the same project.

Increased importance of quality attributes
Web systems represent an increase in mission critical applications that are often,
as mentioned above, directly accessible to external users and customers. Flaws in
applications (be they usability, performance or robustness) are therefore typically
more visible and hence are more problematic.

As with some other aspects, this has not been directly addressed at a modeling
level, except insofar as developing effective architectures that support characteris-
tics such as robustness, scalability and reliability. These elements have not been
effectively woven into the detailed Web requirements or design models.

In terms of development processes, there is a need to address quality assurance
(QA) issues. Some work has been carried out looking explicitly at quality assur-
ance issues in Web development – though in general this has been restricted to
specific domains such as educational applications [12]. One key element of effec-
tive QA is evaluation. Indeed, it has been claimed that the quality of multimedia
projects are directly determined by the effort put into evaluation [37]. For effec-
tive evaluation we need to establish suitable quality criteria – particularly in terms
of how the Web system will be actually tested against client requirements. This
also implies the need to actually understand client requirements – an issue that we
discuss further shortly.

Another important issue is the establishment of suitable standards in order to
ensure consistency – both from a usability perspective and from a development
perspective. It is worth noting that considerable attention is beginning to focus on
usability standards and, in particular, accessibility standards such as the World
Wide Web Consortium's (W3C) Accessibility Initiative [7].

8.2.2 Organizational Differences

In addition to the technical differences, and possibly more important than them,
are a number of organizational characteristics that are either unique or heightened
in Web systems [5]. One of the key ones is the issue of client uncertainty. This
however relates strongly to how client and developer knowledge emerges during
the project, and so will be discussed in the following section. Various other issues
are worth briefly considering.

Short time frames for initial delivery
Web development projects often have delivery schedules that are much shorter
than for conventional IT projects – often in the range of 1-3 months. This is partly
a consequence of the rapid pace of technological development and partly related to

www.manaraa.com

the rapid uptake of Web systems. This is an issue that has yet to be considered in
any substantive way in terms of how it impacts on Web design models and nota-
tions.

In terms of processes, the shorter development timeframes increases the impor-
tance of incremental development approaches and consequently also increases (as
discussed above) the reliance on flexible system architectures (particularly with
respect to the user interface and the way in which information is managed within
the site).

Highly competitive
Web projects tend to be highly competitive. This is, of course, not new – being
typical of the IT industry in general. The nature of the competitiveness is, how-
ever, somewhat different. There is regularly a perception that with simple Web
authoring tools anyone can create an effective site. This creates inappropriate ex-
pectations from clients coupled with numerous small start-up companies claiming
to be doing effective Web design but in reality offering little more than HTML
skills and rudimentary graphic design. The result is a highly uninformed competi-
tiveness.

Fine-grained evolution and maintenance
Web sites typically evolve in a much finer-grained manner than conventional IT
applications. The ability to make changes that are immediately accessible to all
users without their intervention means that the nature of the maintenance process
changes. Rather than a conventional product maintenance / release cycle, we typi-
cally have an ongoing process of content updating, editorial changes, interface
tuning etc. The result is a much more organic evolution.

As with many other aspects, this has yet to be considered in any substantial de-
tail. It is worth pointing out, however, that one aspect of modeling that actively
inhibits effective Web system maintenance is the lack of a cohesive architectural
modeling language that actively links the information architecture with the techni-
cal architecture [19]. Conversely, the information models (such as OOHDM [42]
and WebML [6]) actively support a much clearer understanding of the impacts of
changes to various aspects of the underlying content, viewpoints or navigational
structures.

One interesting avenue of work has been that related to Configuration Man-
agement (CM). Dart [10] argues that, because of the incremental nature of Web
projects, and the fine-grained way in which they change, CM is even more impor-
tant than for conventional projects. Only very rudimentary consideration is, how-
ever, given to the way in which CM is integrated into the broader development
process.

It is also useful to note that a consequence of the emphasis on rapid develop-
ment and fine-grained development is that there can tend to be less thought given
to formal evaluation as this is often perceived as interrupting the build process.

One unusual area that has been used as an analogy for web development and
may provide some useful insights into maintenance processes is landscape garden-

www.manaraa.com

ing [30]. Web site development is often about creating an infrastructure (laying
out the garden) and then `tending' the information that grows and blooms within
this garden. Over time the garden (i.e. Web site) will continue to evolve, change
and grow. A good initial architecture should allow this growth to occur in a con-
trolled and consistent manner. This analogy has been discussed in terms of pro-
viding insights into how a site might be maintained.

8.3 Evolving Project Knowledge

The above discussion has highlighted various aspects that characterize Web de-
velopment. Few, if any of these characteristics, are unique to Web projects.
When taken as a whole they tend, however, to characterize these projects.

There is however a characteristic that was skimmed over, but is much more
significant in the overall impact that it is likely to have on the development proc-
ess. This characteristic is the impact that a developed system has on the nature of
the problem being addressed and how this relates to client uncertainty and emerg-
ing knowledge. As we stated in the introduction, the solution being developed in-
herently changes the nature of the problem which it is addressing – i.e. the prob-
lem domain and the solution domain are mutually constituted and interdependent!
This will affect not only the way in which the solution is developed, but more fun-
damentally the way in which the problem itself is understood (and indeed, how
this understanding changes over time).

Whilst there has been substantial work on using the Web to manage knowledge
whilst carrying out development projects, there has been very little consideration
given to how knowledge about web systems emerges and is managed during de-
velopment. To understand this a little better, we begin by considering the issue of
client uncertainty and requirements volatility.

8.3.1 Client uncertainty

It is often argued that with internet and Web-based systems, the technology, de-
velopment skills, business models and competing systems are changing so rapidly
that the domain is often not only poorly understood, but also constantly evolving
[43]. This can lead to a client not understanding their needs. Specifically, clients
often have difficulty not only articulating their needs, but also in understanding
whether a particular design will satisfy their needs. This is typically a result of a
poor understanding of the consequences of the given solution. It is also worth not-
ing that many web projects are vision-driven rather than needs-driven leading to
an initial lack of clarity.

This interpretation is, however, a little simplistic. More commonly, clients will
have sound knowledge about their own (current) business models, contexts, proc-
esses – and hence the problem to which they are seeking a solution. Whilst it is
true that they may have difficulties in articulating this knowledge, there is a pleth-

www.manaraa.com

ora of work in the requirements engineering domain about how this particular
challenge can be addressed. Where a greater challenge arises is the situation
where a client does not initially comprehend that a given problem definition will
result in a solution that has impacts beyond the confines of the problem as defined
– i.e. a possible solution that adequately addresses the problem as defined by the
client will change or impact on other elements of the clients business model, proc-
esses or context. In this situation, the client's knowledge of the solution impacts
only emerges progressively as possible designs are created by the developer and
jointly explored [44].

An alternative way of conceptualizing this is that the underpinning technology
that enables the solution implies certain linkages between different aspects of the
solution, and so when one of these aspects is addressed by a solution, the other
elements are also affected. This can possibly be clarified with a simple example.
Consider an existing company that does event promotion by regularly collecting
information from event venues and using this to construct promotional posters for
distribution – with advertising space available to generate an income stream. De-
veloping a web-based system to support distribution of the event information may
seem like a relatively straightforward extension of existing business models and
processes, but the interaction with the customer base (i.e. event patrons) and ad-
vertisers is changed by the nature of the Web. Specifically, it is likely that the pa-
trons will have new expectations regarding the ability to dynamically provide
feedback on events, which in turn will change the value of this information. Ad-
vertisers will perceive differing value in a transient online presence as compared
to more permanent hardcopy advertising material. In other words, the solution that
is constructed will change the value chains that exist in the business and possible
even ultimately the business model itself. The client's knowledge regarding these
changes will only develop once the system itself takes form and can be used to
gain feedback.

8.3.2 Addressing Client Uncertainty and Understanding Requirements

So, client uncertainty largely arises from a lack of understanding of the likely
broader impact on business problems of addressing a given set of business needs,
and client knowledge about their evolving needs emerges progressively during the
development. How is this issue addressed by current approaches? A useful place
to start in understanding this issue is to look at how requirements are handled in
Web projects. Stated rather simplistically, conventional development tends to as-
sume that requirements are known to clients, and simply need to be elicited and
analyzed. Requirements processes usually differentiate (at least conceptually, if
not in the way they are represented) between user requirements that capture the
user understanding of their needs and the system specification that represents the
system that will meet these needs. The user requirements are often elicited and
formalized in a URD (or User Requirements Definition) and then analyzed to con-
struct the system requirements which are formalized in a SRS (or system require-

www.manaraa.com

ments specification). In effect, the two documents are different representations of
the same concepts.

One significant difficulty with this paradigm is that it presumes that clients ei-
ther understand their requirements, or at the very least understand the problem that
is being addressed and can be led through a process of articulating their needs.
Even when clients are not able to articulate their requirements precisely, they are
at least able to understand whether a given design will address their needs. In
cases such as these, the design may commence prior to full resolution of require-
ments. The design will then be used to ascertain (from client feedback) whether
the proposed solution addresses the identified need.

Given the characteristics of Web projects that have been outlined, this will
problematic. A fundamental problem arises out of the evolving client knowledge
about the changes to the problem domain – and the fact that this evolving knowl-
edge is actually triggered by the system designs, prototypes and implementations.

Turning this around, we can see that it becomes impractical to resolve the re-
quirements (which in essence are an articulation of what needs to be done to ad-
dress the problem domain) without an understanding of the proposed solution do-
main. In our research work we have been referring to this is a design-driven
requirements process [32]. An interesting analogy is found in the area of social
informatics [40], which encompasses the concept that technology and the use of
that technology are mutually constituted – i.e. the desired use defines the desired
technological solution, but the actual solution changes the usage. Web systems
could be described as an exemplar of that class of systems where the system and
the problem domain are mutually constituted.

Whilst there has been little work addressing this specific issue, some of the
techniques mentioned above that focus on modeling the way in which systems are
utilized [20, 47] may help reduce client uncertainty and allow clients to obtain a
clearer view of potential changes to their businesses.

One avenue being pursued by the authors is the investigation of a characteriza-
tion model that represents the key aspects that need to be woven into an evolving
specification of a Web system [29] (see Table 1 for an example). The complete
form of the model highlights the links between the various characteristics, espe-
cially including the link between the business architecture and the technical and
information architectures. The intention is that it be used to guide the formulation
and evaluation of project acceptance criteria, user requirements and detailed con-
tractual specifications.

8.3.3 Development Processes

So what development approach can be used to address this “design-driven re-
quirements” process and assist clients in constructing knowledge about the im-
pacts of the solutions being developed? We can begin by considering the increas-
ing use of lightweight development processes for software projects [1, 15].

www.manaraa.com

Table 1. Acceptance Criteria Framework

Dimension Possible Representa-
tions

Example Elements

Client/User

Client problem
statement

(Natural language)

Product vision (Natural language) Client needs and business
objectives

Users (Natural language) User descriptions and
models

Application

Content modeling Structured language, hy-
permedia / information
modeling languages
(OOHDM, HDM, entity
modeling, etc.)

Existing content structure,
Information views, Navi-
gational structures, Re-
quired content

User interaction Modified TAM Usability and usefulness
metrics

 Structured language, hy-
permedia modeling, HCI
models, etc

Access mechanisms, user
control behaviour, user
orientation, search re-
quirements, security con-
trol

Development
Constraints

Natural language, stan-
dards

Adherence to corporate
policies, Resource avail-
ability

Non-functional
requirements

Natural language, quality
metrics, adherence to stan-
dards

Reliability of content,
Copyright constraints

Application Evolution

Evolution direc-
tions

(Natural language) Expected content changes

Client adoption/
integration of
Web

Business Process Reengi-
neering

Information dissemination
paths, Workflow changes

Maintenance
processes

Natural language, process
models

Content maint. responsibil-
ity, Web management cy-
cles

www.manaraa.com

One of the approaches receiving the most attention is the use of XP (eXtreme Pro-
gramming) [4]. XP is based on the incremental development of partial solutions
that address component requirements. These partial solutions are then integrated
into the evolving system through refactoring of the current solution to incorporate
these components. When used in conventional software development XP has (ar-
guably) proven to be effective for projects that are initially ill-defined – a charac-
teristic of many web projects. This is possibly because it allows a client to see the
emerging solution early in the development when further clarification of the re-
quirements is still possible. As a result, many of the proponents of XP and similar
approaches see them as ideal to be adopted for Web development [46]. In effect,
the emerging solution will facilitate the development of client knowledge about
the impacts of the solutions, and allow the refinement of the system definition
early in the development.

It can be argued, however, that there are certain problems that restrict the appli-
cability of approaches such as these to Web projects (see, for example [33]). The
first is that a number of studies have shown that approaches such as XP only work
effectively for projects that have cohesive development teams. This is often not
the case with Web projects, which often lack cohesiveness between the technical
development and the creative design as a result of the disparate disciplinary back-
grounds of the development team members. XP can also result in a brittle archi-
tecture and poor documentation, which makes ongoing evolution of the system
difficult – something that is important for Web systems. Finally, and perhaps
most fundamentally, XP utilizes partial solutions to resolve uncertainty in re-
quirements, but does not inherently handle subsequent changes in these require-
ments (i.e. requirements volatility) as the system evolves. In other words, the in-
cremental development implicit in XP can be viewed as a form of prototyping that
aims to either consider the applicability of a given design to a known problem, or
to assist the developers in ensuring that they have understood the clients’ problem.
The prototyping in Web development however aims to help a client develop an
understanding of how different solutions may impact on the nature of the problem
being addressed.

A useful divergence at this point is to consider a comparison with the approach
that is often referred to as "Ready-Fire-Aim" [23]. This essentially is referring to
approaches where the design is commenced prior to a full understanding of the re-
quirements (or coding commenced prior to a full design, depending on the inter-
pretation) as a way of informing clients in the presence of uncertainty. In contrast,
commercial Web development is typically about developing prototype solutions as
a way not of resolving initial uncertainty, but rather to understand the impact of a
given solution. This is a little bit like saying “Well, if we fire there, then it will
have this impact, but if we fire there it will have that impact” . i.e. Possible solu-
tions are jointly investigated by the developer and client (typically, through a de-
sign prototyping approach – but prior to committing to a specific solution) in
terms of their impact on the problem domain and hence the requirements, with the
ultimate result that a solution is identified that matches a problem that has been
changed by that solution.

www.manaraa.com

In effect, conventional software engineering processes see requirements as pre-
ceding and driving the design process. Even where an incremental approach (such
as XP) or an iterative approach (involving multiple feedback loops) is adopted, the
design is viewed as a way of assisting in the identification and validation of re-
quirements; yet rarely does it help the client to actually formulate their needs. In
Web development, the situation is fundamentally different. The design process
not only helps developers and clients articulate their needs, but also helps clients
understand the system domain and therefore their needs.

In effect, the design drives the requirements process. We begin with a poor cli-

ent understanding of their needs (as well as system capabilities) and during the
course of the project this understanding evolves and matures. This has several
consequences. The first is that it increases the importance of creating flexible so-
lutions that can be updated and migrated to new technologies with minimal effort.
For example, the need for reusable data formats (such as XML) increases substan-
tially. A second consequence is that developers' understanding of these technolo-
gies is often restricted, increasing project risks.

Exploration Phase

Client

Prototype
Development

Detailed
Analysis Build

Analyst Developer

Project Brief /
Acceptance

Criteria

Specification

Evaluation

Prototypes /
Partial Designs

Client Feedback

Architectural
Specification

Specification
Contract

Build
Contract

Build
Specification

Evaluation Evaluation

Built System

Build Phase

Fig. 8.1. Typical Web Development Process

Figure 1 shows a depiction of a development process for Web systems that in-
corporates this understanding. In this figure, the first cycle iterates around a series
of exploratory design prototypes, including elements such as white sites and story-
boards, with the aim of moving from an initial set of acceptance criteria to a clear
specification of the system – but a specification that includes not only require-
ments but also the broad architectural design elements of the site [16, 21]. The
second cycle covers the (usually fine-grained incremental) design and build proc-
ess. In effect, the process (specifically the first of the two key cycles shown in
Figure 1) is aimed at developing (or rather evolving) a joint understanding of the
combined problem/solution domain.

www.manaraa.com

Finally, it is worth noting that anecdotal evidence indicates that these issues are
well understood and accepted within industry. Research has been limited to em-
pirical work using scenario-based redesign of partially developed sites [14] though
this work has at least recognized the importance of designs in assisting clarifica-
tion of client needs:

“We practice a revised method of scenario-based design inferred from a theo-
retical perspective which treats design as inquiry, inquiry as dialogue and dialogue
as the source of all tools, including mental constructs. The result is a set of tech-
niques for using structured dialogue between users and designers to increase de-
signers’ understanding of specific domains of users’ work.”

In commercial Web projects, these concepts (and particularly the mutual inter-
dependence of requirements and design) are typically reflected in the absence of
separate requirements and design documents. Rather, developers tend to create a
hybrid specification that blends design and requirements (something that is usually
viewed as anathema in conventional software engineering).

In other words, system design allows stakeholders to understand technical pos-
sibilities and limitations, and hence improve their understanding of the develop-
ment context. The result is a vehicle for reducing the underlying uncertainty. For
this to be effective, however, we need to develop a suitable model of the relation-
ship between system design, client requirements, and uncertainty within these re-
quirements. This uncertainty model can then be used to adapt the requirements
engineering process – resulting in a design-driven requirements process. This is
the focus of our ongoing research.

8.5 Future Trends and Conclusions

So what conclusions can we draw from the above discussions regarding how
knowledge is managed in Web projects? The key insight is that the nature of Web
projects implies that since the solution changes the nature of the problem we
therefore need to acknowledge that a client will be inherently unable to define
their problem in the absence of a possible solution. Different solutions (i.e. the
Web systems to be developed) will fundamentally lead to differing impacts on the
stakeholder interactions and business processes and hence to different problem
domains. This in turn means that we need to recognize the importance of explor-
ing a range of possible solutions – and to do so not only to determine the optimal
design, but possibly to determine the optimal problem!

Further, it also indicates that client involvement in the design process becomes
crucial (something that is often viewed as very dangerous). Without an under-
standing of the possible system designs, the client is unlikely to develop a clear
understanding of the implications of a proposed solution. Thus design knowledge
becomes a crucial enabling tool within Web projects.

Ongoing work of the author and others has begun to explore exactly what level
and form of design knowledge will best assist clients in developing a clear con-

www.manaraa.com

ceptualization of the impact of possible designs. This work is, however, still too
early to have provided concrete outcomes.

Another project that is only just commencing is looking at process modeling
and project management tools that track the evolving process that accompanies the
evolving product understanding. By monitoring the relationships between these
models (often expressed as project plans) and the initial templates from which
they were derived it is possible to identify the points at which the process devi-
ated. Once this is identified, the developer can be interrogated as to the cause of
the deviation, and this information then fed back into the underlying project tem-
plates to support future project planning. This approach becomes much more cru-
cial in Web projects where the nature of the process is difficult to determine a pri-
ori because of the evolving system.

Ultimately, the insights explored in this paper are not only about Web projects,
but rather about those systems where, as we mentioned, the solution and the prob-
lem are mutually constituted – i.e. neither can exist without the other, and they
need to be jointly understood, developed, and evolved.

Acknowledgements

The author wishes to acknowledge the assistance and insights of numerous
people in developing the concepts described in this chapter. In particular the au-
thor is grateful to John Eklund, Brian Henderson-Sellers, Ross Jeffery, Didar
Zowghi, Aybuke Aurum, Nick Carr, Marcus Carr, Vassiliki Elliott, Norazlin Yu-
sop, Louise Scott, Lucila Carvalho, and John D’Ambra, for their contributions to
this research.

The author also wishes to acknowledge the collaborative funding support from
the Australian Research Council, Access Online Pty Ltd and Allette Systems Ltd.
Under grant no. C4991-7612.

References

8.1. Angelique, E. (1999), A Lightweight Development Process for Imple-
menting Business Functions on the Web. in WebNet'99. Honolulu, Ha-
waii, USA.

8.2. Baresi, L., F. Garzotto, and P. Paolini (2001), Extending UML for Model-
ing Web Applications. in 34th Hawaii International Conference on Sys-
tem Sciences. Hawaii, USA.

8.3. Baumeister, H., N. Koch, and L. Mandel (1999), Towards a UML Exten-
sion for Hypermedia Design. in <<UML>> 1999: The Second Interna-
tional Conference on The Unified Modeling Language. Fort Collins,
Colorado, USA: IEEE.

8.4. Beck, K. (1999), Extreme Programming Explained: Addison-Wesley.

www.manaraa.com

8.5. Burdman, J. (1999), Collaborative Web Development: Addison-Wesley.
8.6. Ceri, S., P. Fraternali, and A. Bongio (2000), Web Modeling Language

(WebML): a modeling language for designing Web sites. in Proceedings
of WWW9 Conference. Amsterdam.

8.7. Chisholm, W., G. Vanderheiden, and I. Jacobs (1999), Web Content Ac-
cessibility Guidelines 1.0. World Wide Web Consortium.

8.8. Conallen, J. (1999), Building Web Applications with UML. Addison
Wesley Object Technology Series: Addison-Wesley. 336.

8.9. Constantine, L.L. and L.A.D. Lockwood (1999), Software For Use: Ad-
dison-Wesley. 579.

8.10. Dart, S. (2000), Configuration Management: The Missing Link in Web
Engineering: Artech House.

8.11. De Troyer, O. and C. Leune (1997), WSDM: A user-centered design
method for Web sites. in 7th International World Wide Web Conference.
Brisbane, Aust: Elsevier.

8.12. Eklund, J. and D. Lowe (2000), A quality assurance methodology for
technology-delivered education and training. in WebNet 2000: World
Conference on the WWW and Internet. San Antonio, Texas, USA:
AACE: Association for Advancement of Computing in Education.

8.13. England, E. and A. Finney (1999), Managing Multimedia: Project Man-
agement for Interactive Media. 2nd ed: Addison-Wesley.

8.14. Erskine, L., D. Carter-Tod, and J. Burton (1997), Dialogical techniques
for the design of web sites. International Journal of Human-Computer
Studies, 47: p. 169-195.

8.15. Fournier, R. (1999), Methodology for Client/Server and Web Application
Development: Yourdon Press.

8.16. Gates, L. (2001), Analysis and Design: Critical yet Complicated, in Ap-
plication Development Trends. p. 40-42.

8.17. German, D.M. and D.D. Cowan (1999), Formalizing the specification of
Web applications. Lecture Notes in Computer Science, Springer Verlag,
1727: p. 281–292.

8.18. Ginige, A., D. Lowe, and J. Robertson (1995), Hypermedia Authoring.
IEEE Multimedia, Winter 1995.

8.19. Gu, A., D. Lowe, and B. Henderson-Sellers (2002), Linking Modelling
Capabilities and Abstraction Levels: The Key to Web System Architec-
tural Integrity. in WWW'2002: The Eleventh International World Wide
Web Conference. Hawaii, USA: ACM Press.

8.20. Guell, N., D. Schwabe, and P. Vilain (2000), Modeling Interactions and
Navigation in Web Applications. in World Wild Web and Conceptual
Modeling'00 Workshop - ER'00 Conference. Salt Lake City, USA.

8.21. Haggard, M. (1998), Survival Guide to Web Site Development: Microsoft
Press. 225.

8.22. Hennicker, R. and N. Koch (2001), Systematic Design of Web Applica-
tions with UML, in Unified Modeling Language: Systems Analysis, De-
sign and Development Issues, K. Siau and T. Halpin, Editors. IDEA
Group Publishing.

www.manaraa.com

8.23. Holtzman, J.K. (1993), Ready. Fire!! Aim??? in Proceedings of the 11th
annual international conference on Systems documentation. Waterloo,
Canada: ACM Press.

8.24. Isakowitz, T., E. Stohr, and P. Balasubramanian (1995), RMM: A Meth-
odology for Structured Hypermedia Design. Communications of the
ACM, 38(8): p. 34-44.

8.25. Koch, N. and A. Kraus (2002), The expressive Power of UML-based Web
Engineering. in Second International Workshop on Web-oriented Soft-
ware Technology (IWWOST2). Malaga, Spain.

8.26. Lange, D. (1994), An Object-Oriented Design Method for Hypermedia
Information Systems. in HICSS-27: Proc of the Twenty Seventh Hawaii
International Conference on System Sciences. Maui, Hawaii.

8.27. Lee, S.C. (1997), A Structured Navagation Design Method For Intranets.
in Third Americas Conference on Information Systems, Association for
Information Systems (AIS). Indianapolis.

8.28. Lord, J. (2000), Patterns for e-business: Lessons learned from building
successful e-business applications. IBM. p. 4.

8.29. Lowe, D. (2000), A Framework for Defining Acceptance Criteria for
Web Development Projects. in Second ICSE Workshop on Web Engineer-
ing. Limerick, Ireland.

8.30. Lowe, D. (2000), Web Engineering or Web Gardening?, in WebNet
Journal: Internet Technologies, Applications and Issues.

8.31. Lowe, D. and B. Henderson-Sellers (2001), Web Development: Address-
ing Process Differences. Cutter IT Journal.

8.32. Lowe, D. and J. Eklund (2002 (Accepted)), Client Needs and the Design
Process in Web Projects. Journal of Web Engineering, 1(1).

8.33. Martin, R. (2000), A Case study of XP practices at work. in XP2000.
Cagliari, Italy.

8.34. OMG (2000), OMG Unified Modeling Language Specification, Version
1.3 (released to the general public as OMG document formal/00-03-01 in
March 2000).

8.35. Overmyer, S. (2000), What's Different about Requirements Engineering
for Web Sites? Requirements Engineerng Journal, 5(1): p. 62-65.

8.36. Paulo, F.B., et al. (1998), XHMBS: A formal model to support hyperme-
dia specification. in Ninth ACM Conference on Hypertext: Association of
Computing Machinery.

8.37. Philips, R. (1997), The developer's handbook to interactive multimedia:
Kogan Page. London.

8.38. Pressman, R. (2001), Software Engineering: A Practitioner's Approach.
5th ed: McGraw Hill.

8.39. Russell, P. (2000), Infrastructure - Make or Break your E-Business. in
TOOLS-Pacific 2000: Technology of Object-Oriented Languages and
Systems. Sydney, Australia.

8.40. Sawyer, S. and H. Rosenbaum (2000), Social Informatics in the Informa-
tion Sciences: Current (2000). Informing Science, 3(2): p. 89-96.

www.manaraa.com

8.41. Schwabe, D. and G. Rossi (1995), The Object-Oriented Hypermedia De-
sign Model. Communications of the ACM, 38(8): p. 45-46.

8.42. Schwabe, D. and G. Rossi (1998), Developing Hypermedia Applications
using OOHDM. in Workshop on Hypermedia Development Processes,
Methods and Models (Hypertext'98). Pittsburgh, USA.

8.43. Sinha, G. (1999), Build a Component Architecture for E-Commerce. e-
Business Advisor, March.

8.44. Stein, L.D. (2000), Profit, the Prime Directive. WebTechniques, 5(11): p.
14-17.

8.45. Takahashi, K. and E. Liang (1997), Analysis and Design of Web-based
Information Systems. in 7th International World Wide Web Conference.
Brisbane, Aust.

8.46. Thomas, D. (2000), Managing Software Development in Web Time Soft-
ware. in XP2000. Cagliari, Italy.

8.47. Vilain, P., D. Schwabe, and C.S.d. Souza (2000), A Diagrammatic Tool
for Representing User Interaction in UML. in <<UML>>2000: The
Third International Conference on The Unified Modeling Language.
York, U.K.: IEEE.

